\qquad

1) Use eight colors to color the real number line and complex plane.

2) Fill the Venn diagram with all 21 letters below. Each region will have exactly three.

$$
A=\frac{\sqrt{50}}{\sqrt{2}} \quad B=5 \pi \quad C=0.77777 \ldots \quad D=\frac{17}{8} \quad E=-3-2 i \quad F=\pi-\pi
$$

$$
G=17 \quad H=7 i^{3} \quad I=2 i \quad J=2+\sqrt{7} \quad K=4 i^{2} \quad L=i(2 i-4)
$$

$$
M=\sqrt{-9} \quad N=\pi+4 i \quad O=0 \quad P=\sqrt{27} \cdot \sqrt{3} \quad Q=4.28932219 \ldots
$$

$$
R=2 i^{2}+2 \quad S=-2.414141 \ldots \quad T=\frac{-6 \pi}{2 \pi} \quad U=\sqrt{-9} \cdot \sqrt{-4}
$$

Closure: when an operation is performed within a number system and the result is guaranteed to be in the same number system.
\(\left.\begin{array}{|c|c|}\hline Closed \& Not Closed \\
\hline Integer + Interger = Integer \\
since this is always true, \\
integers are closed under addition. \& Integer \div Integer = Integer \\
Proof: 6+12=18 \& since this is only sometimes true, \\

integers are not closed under division.\end{array}\right]\)| Proof: $6 \div 12=0.5$ |
| :---: |

Complete the table by circling "closed" or "not closed," and then give an example or counterexample for proof.
Hint: 16 of these boxes are not closed.

	Addition	Subtraction	Multiplication	Division
Natural	closed or not closed Proof:			
Whole	closed or not closed Proof:			
Integer	closed or not closed Proof: $6+12=18$	closed or not closed Proof:	closed or not closed Proof:	closed or not closed Proof: $6 \div 12=0.5$
Rational	closed or not closed Proof:			
Irrational	closed or not closed Proof:			
Real	closed or not closed Proof:			
Imaginary	closed or not closed Proof:			
Complex	closed or not closed Proof:			

