LESSON 2-4 LIMIT DEFINITION OF THE DERIVATIVE,

 ALTERNATE FORM OF THE LIMIT DEFINITIONAny nonvertical line has the same slope at every point. In Calculus we frequently deal with the slope of a curve. The slope of a curve is defined to be the same as the slope of the curve's tangent line at a given point. To find the slope of a tangent line we use a limit of the slope of a secant line.

$$
\text { slope }=\frac{\text { rise }}{\text { run }}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{f(x+h)-f(x)}{(x+h)-x}
$$

$$
m_{\mathrm{sec}}=\frac{\Delta y}{\Delta x}=\frac{f(x+h)-f(x)}{h}
$$

$$
m_{\mathrm{tan}}=\lim _{\mathbf{h} \rightarrow 0} \frac{f(\mathbf{x}+\mathrm{h})-f(x)}{\mathrm{h}}
$$

The slope of a tangent line is called the derivative of the function at a given x-value. The most commonly used symbol for the derivative is $f^{\prime}(x)$. Here are some other notations you will encounter (assume $y=f(x)$).

$$
f^{\prime}(x)=y^{\prime}=\frac{d y}{d x}=\frac{d}{d x} f(x)=m_{\mathrm{tan}}=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

A vertical tangent line has no slope, so a curve has no derivative at any point where it has a vertical tangent line. Differentiation is the process of finding derivatives. If a derivative exists at a point on a curve, the function is said to be differentiable at that point.

Examples:

1. If $f(x)=x^{2}+2$

$$
\begin{aligned}
& \text { a. find } f^{\prime}(x) \\
& \begin{array}{rlr}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{\left[(x+h)^{2}+2\right]-\left[x^{2}+2\right]}{(x+h)-(x)} & \text { b. use your answer } \\
& =\lim _{h \rightarrow 0} \frac{(x+h)(x+h)+2-x^{2}-2}{h} & \\
& \text { from part a. to find } \\
& =\lim _{h \rightarrow 0} \frac{f^{\prime}(-3) .}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}-x^{2}}{h} & f^{\prime}(-3)=2(-3)=-6 \\
& =\lim _{h \rightarrow 0} 2 x+h=2 x+0=2 x
\end{array}
\end{aligned}
$$

2. If $y=\sqrt{x}$, find y^{\prime}.

$$
\begin{aligned}
y^{\prime} & =\lim _{h \rightarrow 0} \frac{\sqrt{x+h}-\sqrt{x}}{(x+h)-(x)} \\
& =\lim _{h \rightarrow 0} \frac{(\sqrt{x+h}-\sqrt{x})}{h} \frac{(\sqrt{x+h}+\sqrt{x})}{(\sqrt{x+h}+\sqrt{x})} \\
& =\lim _{h \rightarrow 0} \frac{x+h-x}{h(\sqrt{x+h}+\sqrt{x})}=\lim _{h \rightarrow 0} \frac{h}{h(\sqrt{x+h}+\sqrt{x})} \quad \begin{array}{l}
\text { cross out } \\
\text { the hole }
\end{array}=\lim _{h \rightarrow 0} \frac{1}{\sqrt{x+h}+\sqrt{x}}=\frac{1}{\sqrt{x+0}+\sqrt{x}}=\frac{1}{2 \sqrt{x}}
\end{aligned}
$$

3. Given $y=f(t)=\frac{2}{t}$, find the derivative of y with respect to t.

Alternate Form of the Limit Definition of the Derivative

(Gives the value of the derivative at a single point.)

$$
\begin{aligned}
m_{\mathrm{tan}} & =\lim _{x \rightarrow c} m_{\mathrm{sec}} \\
f^{\prime}(c) & =\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}
\end{aligned}
$$

Example 4. If $f(x)=x^{3}$, use the alternate form of the derivative to find $f^{\prime}(3)$.

