LESSON 5-6 DEFINITE INTEGRALS, CALCULATOR INTEGRATION, THE FUNDAMENTAL THEOREM OF CALCULUS

A Definite Integral is written with upper and lower limits attached to an integration expression such as $\int_{a}^{b} f(x) d x$.
The value of a definite integral $\left(\int_{a}^{b} f(x) d x\right)$ may be thought of as a "signed area" from the lower limit a (usually a left side boundary) to the upper limit b (usually a right-side boundary), and between the curve of $f(x)$ and the x-axis. The value may be positive, negative, or zero.
Unlike the previous integration process which produced an indefinite integral (an antiderivative) representing a family of curves, a definite integral represents a number value.

Calculator Integration: A TI-84 calculator can be used to find the value of a definite integral from a to b by using $\int f(x) d x$ in the calculate menu or fnInt in the math menu.
The calculate menu shows a graphical representation of the "signed area" together with the value of the definite integral.

Examples:
Use the calculate menu to evaluate the following definite integrals.

1. $\int_{-3}^{1}\left(x^{3}-6 x\right) d x=4$
2. $\int_{-\sqrt{6}}^{\sqrt{6}}\left(x^{3}-6 x\right) d x=0$
3. $\int_{-5}^{5}\left|x^{3}-6 x\right| d x=198.501$

The math menu only provides the value of the definite integral, but that is usually all that we need. More importantly, the math menu gives a more accurate answer. fnInt is recommended for all problems from now on. Note: Newer operation systems have a MATHPRINT setting that simplifies this process.

Use the math menu to evaluate:
4. $\quad \int_{-5}^{5}\left|x^{3}-6 x\right| d x=\quad \quad \operatorname{fnInt}\left(\operatorname{abs}\left(x^{3}-6 x\right), x,-5,5\right)$ or if $y_{1}=\operatorname{abs}\left(x^{3}-6 x\right)$
198.500 is already entered on your calculator, $\operatorname{fnInt}\left(y_{1}, x,-5,5\right)$
5. Use the idea of "signed area" to evaluate $\int_{0}^{3}|2 x-1| d x$ without using a calculator.

6. Set up a definite integral which could be used to find the area of the region bounded by the graph of $y=2 x^{2}-3 x+2$ (shown at right), the x-axis, and the vertical lines $x=0$ and $x=2$

$$
\begin{gathered}
\int_{0}^{2}\left(2 x^{2}-3 x+2\right) d x \\
>15
\end{gathered}
$$

Discovering the Fundamental Theorem of Calcul
7.

a. Find $\int_{0}^{5} f^{\prime}(x) d x=15$
b. Write an equation for $f^{\prime}(x)$ on $[0,5]$

$$
f^{\prime}(x)=3
$$

c. Find $f(x)$ if $f(1)=4$.

$$
f(x)=3 x+c
$$

$$
f(1)=3(1)+c=4
$$

d. Find $f(5)-f(0)=$

$$
c=1
$$

$-8+16 \cdot 3$
$-4.5+12-3$
a. Find $\int_{-2}^{1} f^{\prime}(x) d x=3$
b. Write an equation for $f^{\prime}(x)$ on $[-2,1] . \quad f^{\prime}(x)=2 x+2$
c. Find $f(x)$ if $f(1)=0 . \quad f(x)=x^{2}+2 x+C$
d. Find $f(1)-f(-2)=$
9. Given $x(t)=-\frac{1}{2} t^{2}+4 t-3$ is the position equation for arrobject moving on the x-axis.
a. Find the displacement of the object on the interval $[1,4]$ 4.5
b. Find the velocity equation $v(t)=0 t+4$
c. Sketch a graph of $v(t)$
d. Find $\int_{1}^{4} v(t) d t=\frac{1}{2}(3)(3)=4.5$

Notice for each of these, the answers to parts a and d are the same.

$$
\begin{aligned}
& f(1)=(1)^{2}+2(1)+c=0 \\
& c=-3 \\
& f(x)=x^{2}+2 x-3
\end{aligned}
$$

If f^{\prime} is a continuous function on $[a, b]$, then $\int_{a}^{b} f^{\prime}(x) d x=\left.f(x)\right|_{a} ^{b}=f(b)-f(a)$ This relationship is known as the Fundamental Theorem of Calculus.

Evaluate using the Fundemental Theorem of Calculus without using a calculator.
(1) cant find area of blue region \because (2) integrate
(3) plug in $x=0$ and $x=4$ to get vertical distance
$14.667-0^{\circ}=14.667^{4}=14.667$
START PLUS ACCUMULATION METHOD
Since $\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$, it follows that

This means a function value can be found as a starting value plus a definite integral.

$$
\begin{aligned}
& \frac{1}{4}\left(\frac{u^{3 / 2}}{3 / 2}+\frac{u^{1 / 2}}{1 / 2}+C\right) \\
& \frac{1}{6}(2 x-1)^{3 / 2}+\frac{1}{2}(2 x-1)^{1 / 2} \\
& \frac{\text { Plug in } 5}{6}-\frac{\text { Plug in l }}{2 / 3} \\
& \text { integral. }=\frac{16}{3}
\end{aligned}
$$

