\qquad

Factor each trinomial (standard form) into the product of two binomials (intercept form).
Example: $x^{2}+14 x+45$
What multiplies to 45? 1 and 45
3 and 15
5 and 9
Which of those pairs adds to 14 ? 5 and 9
Answer: $(x+5)(x+9)$

$x^{2}+14 x+45$	$x^{2}+18 x+45$	$x^{2}+46 x+45$
$x^{2}+11 x+24$	$x^{2}+10 x+24$	$x^{2}+14 x+24$
$x^{2}+12 x+36$	$x^{2}+13 x+36$	$x^{2}+20 x+36$
$x^{2}-15 x-100$	$x^{2}+20 x+100$	$x^{2}+29 x+100$

$x^{2}+9 x+8$	$x^{2}-6 x+8$	$x^{2}-2 x-8$	$x^{2}+7 x-8$
$x^{2}-11 x+24$	$x^{2}-14 x+24$	$x^{2}-25 x+24$	$x^{2}-10 x+24$
$x^{2}-2 x-24$	$x^{2}-5 x-24$	$x^{2}+5 x-24$	$x^{2}-10 x+25$

MIXED BAG - YOU GOT THIS			
$x^{2}-25$	$x^{2}-2 x-15$	$x^{2}+10 x-75$	$x^{2}-20 x+51$
$x^{2}+14 x-32$	$x^{2}-1$	$x^{2}-2 x+1$	$x^{2}+12 x-45$

