- Ways to make power series:
- rewrite them in geometric form (Topic 7)
- use the Taylor formula (Topic 8)
- just memorize them (Topic 9)

In this section you will be using the four elementary power series. You are expected to know them from memory.

$$
\begin{aligned}
& \sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots+\frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}+\cdots \\
& \cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots+\frac{(-1)^{n} x^{2 n}}{(2 n)!}+\cdots \\
& e^{x}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{3!}+\cdots+\frac{x^{n}}{n!}+\cdots \\
& \ln x=(x-1)-\frac{(x-1)^{2}}{2}+\frac{(x-1)^{3}}{3}-\cdots+\frac{(-1)^{n-1}(x-1)^{n}}{n}+\cdots
\end{aligned}
$$

Creating new power series.

Examples: Using these elementary series, find a power series for each of the following functions.
Show four terms and the general term.

1. $\sin x^{2}=x^{2}-\frac{\left(x^{2}\right)^{3}}{3!}+\frac{\left(x^{2}\right)^{5}}{5!}-\frac{\left(x^{2}\right)^{7}}{7!}+\cdots+\frac{(-1)^{n}\left(x^{2}\right)^{2 n+1}}{(2 n+1)!}+\cdots$
2. $\cos \sqrt{x}=1-\frac{(\sqrt{x})^{2}}{2!}+\frac{(\sqrt{x})^{4}}{4!}-\frac{(\sqrt{x})^{6}}{6!}+\cdots+\frac{(-1)^{n}(\sqrt{x})^{2 n}}{(2 n)!}+\cdots$
3. $x e^{x}=x+x^{2}+\frac{x^{3}}{2}+\frac{x^{4}}{3!}+\cdots+\frac{x^{n+1}}{n!}+\cdots$

Use an elementary series to give a series for each of the following functions. Show four terms and the general term.

1. $f(x)=e^{-4 x}$
2. $g(x)=\cos (3 x)$
3. $f(x)=2 \sin x^{2}$
4. $h(x)=(x-1) \ln x$

Write each of the following series as a function using elementary functions.
5. $x-\frac{x^{3}}{2!}+\frac{x^{5}}{4!}-\frac{x^{7}}{6!}+\cdots$
6. $1-x^{2}+\frac{x^{4}}{2!}-\frac{x^{6}}{3!}+\frac{x^{8}}{4!}-\cdots$
7. $\frac{x-1}{x}-\frac{(x-1)^{2}}{2 x}+\frac{(x-1)^{3}}{3 x}-\frac{(x-1)^{4}}{4 x}+\cdots$
8. $1+x-\frac{x^{2}}{2!}-\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\frac{x^{5}}{5!}-\cdots$

Find the value of each of the following using an elementary function.
9. $1-\frac{\pi^{2}}{2!}+\frac{\pi^{4}}{4!}-\frac{\pi^{6}}{6!}+\cdots$
10. $(e-1)-\frac{(e-1)^{2}}{2}+\frac{(e-1)^{3}}{3}-\frac{(e-1)^{4}}{4}+\cdots$
11. $5+\frac{4^{2}}{2!}+\frac{4^{3}}{3!}+\frac{4^{4}}{4!}+\cdots$
12. $-\frac{2^{3}}{3!}+\frac{2^{5}}{5!}-\frac{2^{7}}{7!}+\frac{2^{9}}{9!}-\cdots$

Given $f(x)=1-\frac{4}{3}(x-2)^{2}+\frac{16}{5}(x-2)^{4}-\frac{2^{6}}{7}(x-2)^{6}+\cdots$ is a Taylor Series expansion for $f(x)$ find:
24. a general term for the series.
25. the center of the series.
26. $f(2)$
27. $f^{\prime}(2)$
28. $f^{\prime \prime}(2)$
29. $f^{(11)}(2)$
30. $f^{(12)}(2)$
31. $f^{\prime}(x)$
32. Is the point $(2,1)$ on this same function a local minimum, a local maximum, or neither. Justify.
38. Find a third degree Taylor Polynomial for $f(x)=\tan x$ centered at $c=\frac{\pi}{4}$.
39. Find a series for the function $f(x)=\cos x$ centered at $c=\frac{3 \pi}{4}$. Show four terms.
40. Write the following function as a geometric series showing four terms and the general term and find the interval of convergence. $f(x)=\frac{3}{1+2 x}$
41. Find a function for the series $g(x)=1-\frac{3}{4} x+\frac{9}{16} x^{2}-\frac{27}{64} x^{3}+\cdots$ and determine its domain.

1. $1-4 x+8 x^{2}-\frac{32}{3} x^{3}+\cdots+\frac{(-1)^{n} 4^{n} x^{n}}{n!}+\cdots$
2. $1-\frac{(3 x)^{2}}{2!}+\frac{(3 x)^{4}}{4!}-\frac{(3 x)^{6}}{6!}+\cdots+\frac{(-1)^{n} 3^{2 n} x^{2 n}}{(2 n)!}+\cdots$
3. $(x-1)^{2}-\frac{(x-1)^{3}}{2}+\frac{(x-1)^{4}}{3}-\frac{(x-1)^{5}}{4}+\cdots+\frac{(-1)^{n+1}(x-1)^{n+1}}{n}+\cdots$
4. $x \cos x$
5. $e^{-x^{2}}$
6. $\frac{\ln x}{x}$
7. -1
8. $1 \quad$ 11. e^{4}
9. -1.091

$$
\begin{aligned}
& \text { 25. } c=2 \quad 27.0 \quad \text { 28. }-\frac{8}{3} \quad 29.0 \\
& \text { 31. } f^{\prime}(x)=-\frac{8}{3}(x-2)+\frac{64}{5}(x-2)^{3}-\frac{2^{6} \cdot 6}{7}(x-2)^{5}+\cdots
\end{aligned}
$$

36. diverges \quad 37. $\frac{3}{2} \quad$ 38. $\tan x \approx 1+2\left(x-\frac{\pi}{4}\right)+\frac{4}{2!}\left(x-\frac{\pi}{4}\right)^{2}+\frac{16}{3!}\left(x-\frac{\pi}{4}\right)^{3}$
37. $f(x)=3-6 x+12 x^{2}-24 x^{3}+\cdots+(-1)^{n} 3 \cdot 2^{n} x^{n}+\cdots$, IOC: $-\frac{1}{2}<x<\frac{1}{2}$
38. $g(x)=\frac{1}{1+\frac{3}{4} x}$, Do: $-\frac{4}{3}<x<\frac{4}{3}$
