BC Topic 7 - Power Series

due Monday, November 13

Series: $1 + 0.1 + 0.01 + 0.001 + 0.0001 + \dots$

$$5 + 7 + 9 + 11 + 13 + 15 + 17 + \dots$$

$$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \dots$$

$$3 - \frac{3}{2} + \frac{3}{3} - \frac{3}{4} + \frac{3}{5} - \frac{3}{6} + \frac{3}{7} - \dots$$

Power Series: $1 + 0.1x + 0.01x^2 + 0.001x^3 + 0.0001x^4 + \dots$

$$5 + 7x^2 + 9x^4 + 11x^6 + 13x^8 + 15x^{10} + \dots$$

$$1 + \frac{1}{2}x + \frac{1}{4}x^2 + \frac{1}{8}x^3 + \frac{1}{16}x^4 + \frac{1}{32}x^5 + \dots$$

$$3x - \frac{3}{2}x^3 + \frac{3}{3}x^5 - \frac{3}{4}x^7 + \frac{3}{5}x^9 - \frac{3}{6}x^{11} + \frac{3}{7}x^{13} - \dots$$

You can think of a power series as an infinite polynomial.

THE COOL PART

You can mimic any curve with an infinite polynomial (a power series).

EXAMPLE

Graph this rational function on Desmos. $f(x) = \frac{1}{1+x}$

Next, graph this 9th-degree polynomial. $f(x) = 1 - x + x^2 - x^3 + x^4 - x^5 + x^6 - x^7 + x^8 - x^9$

Finally, graph this 100th-degree polynomial. $f(x) = \sum_{n=0}^{100} 1(-x)^n$

If you were to graph the entire power series (to infinity), you would see it perfectly line up with the original rational function for the interval -1 < x < 1. This is called the *interval of convergence*.

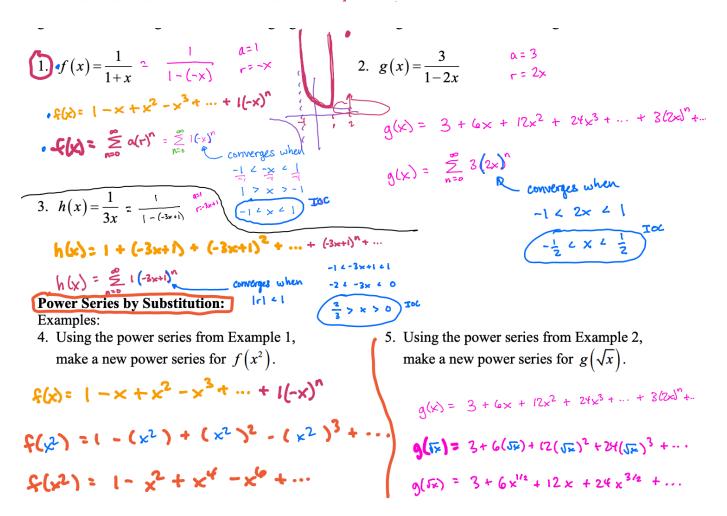
Power Series, Geometric Power Series

A series with variable terms like $1+x+x^2+x^3+\cdots+x^n+\cdots$ is called a **power series**. Note that this series is a **geometric power series**. If it converges, what must be true about the variable x?

For these x-values
$$\frac{1}{1+x+x^2+x^3+\cdots+x^n+\cdots} = \frac{\alpha}{1-\alpha} = \sum_{n=0}^{\infty} \alpha(r)^n$$

This means for these x-values, the function $f(x) = \frac{1}{1-x}$ can be written as $f(x) = \sum_{n=0}^{\infty} x^n$.

Examples: Find a power series for each of the following functions. Show four terms and the general term. Also give the series using sigma notation and give the interval of convergence.



Find a geometric power series for each of the following functions. Show four terms and the general term. Also give the series using sigma notation and give the interval of convergence.

1.
$$\frac{1}{1-3x}$$

2.
$$\frac{2}{1-x^3}$$

3.
$$\frac{x}{1+x}$$

$$4. \ \frac{1}{1+\left(-x-3\right)}$$

5.
$$\frac{3}{4x}$$

6.
$$\frac{1}{2-2x}$$

Find a function for each of the following geometric power series. Also give the interval of convergence.

$$7. \quad \sum_{n=0}^{\infty} (2x)^n$$

$$8. \quad \sum_{n=0}^{\infty} \left(-\frac{1}{2}\right)^n x^n$$

9.
$$\sum_{n=0}^{\infty} 4(x-1)^n$$

$$10. \sum_{n=1}^{\infty} \left(x^2\right)^n$$

$$11. \sum_{n=0}^{\infty} (\sin x)^n$$

14. Find a geometric power series for $g(x) = \frac{1}{1+x}$. Show four terms and the general term.

15. Use the answer to Problem 14 to find a power series for $\frac{1}{1+x^2}$.

Use the function $f(x) = \sum_{n=1}^{\infty} \frac{x^n}{n}$ to find the following. Answer using sigma notation.

17.
$$f(-x)$$

18.
$$f'(x)$$

Use the function $g(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots + \frac{(-1)^n x^{2n}}{(2n)!} + \dots$ to find the following.

Show four terms and the general term.

20.
$$g(\sqrt{x})$$

21.
$$g'(x)$$

1.
$$1+3x+9x^2+27x^3+\cdots+(3x)^n+\cdots=\sum_{n=0}^{\infty}(3x)^n$$
; $\left(-\frac{1}{3},\frac{1}{3}\right)$

2.
$$2+2x^3+2x^6+2x^9+\cdots+2(x^3)^n+\cdots=\sum_{n=0}^{\infty}2(x^3)^n$$
; $(-1,1)$

3.
$$x-x^2+x^3-x^4+\cdots+(-1)^n x^{n+1}+\cdots=\sum_{n=0}^{\infty} (-1)^n x^{n+1}=\sum_{n=1}^{\infty} (-1)^{n+1} x^n$$
; $(-1,1)$

5.
$$3+3(1-4x)+3(1-4x)^2+3(1-4x)^3+\cdots+3(1-4x)^n+\cdots=\sum_{n=0}^{\infty}3(1-4x)^n$$
; $\left(0,\frac{1}{2}\right)$

6.
$$\frac{1}{2} + \frac{1}{2}x + \frac{1}{2}x^2 + \frac{1}{2}x^3 + \dots + \frac{1}{2}x^n + \dots = \sum_{n=0}^{\infty} \frac{1}{2}x^n$$
; $(-1,1)$

7.
$$\frac{1}{1-2x}$$
; $\left(-\frac{1}{2},\frac{1}{2}\right)$

8.
$$\frac{1}{1+\frac{1}{x}} = \frac{2}{2+x}$$
; $(-2,2)$

7.
$$\frac{1}{1-2x}$$
; $\left(-\frac{1}{2},\frac{1}{2}\right)$ 8. $\frac{1}{1+\frac{1}{2}x} = \frac{2}{2+x}$; $\left(-2,2\right)$ 9. $\frac{4}{1-\left(x-1\right)} = \frac{4}{2-x}$; $\left(0,2\right)$

10.
$$\frac{x^2}{1-x^2}$$
; (-1,1)

14.
$$1-x+x^2-x^3+\cdots+(-1)^n x^n+\cdots$$

15.
$$1-x^2+x^4-x^6+\cdots+(-1)^n x^{2n}+\cdots$$

17.
$$f(-x) = \sum_{n=1}^{\infty} \frac{(-1)^n x^n}{n}$$

18.
$$f'(x) = \sum_{n=1}^{\infty} x^{n-1}$$

20.
$$g(\sqrt{x}) = 1 - \frac{x}{2!} + \frac{x^2}{4!} - \frac{x^3}{6!} + \dots + \frac{(-1)^n x^n}{(2n)!} + \dots$$

21. $g'(x) = -x + \frac{x^3}{3!} - \frac{x^5}{5!} + \dots + \frac{(-1)^n x^{2n-1}}{(2n-1)!} + \dots$

21.
$$g'(x) = -x + \frac{x^3}{3!} - \frac{x^5}{5!} + \dots + \frac{(-1)^n x^{2n-1}}{(2n-1)!} + \dots$$