name:

BC Topic 6 — Ratio Test due Wednesday, November 1

Ratio Test: (useful for series involving factorials or exponentials) 1. $\sum a_n \text{ converges if } \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| < 1.$ 2. $\sum a_n \text{ diverges if } \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| > 1 \text{ or } \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \infty.$ 3. The Ratio Test is inconclusive if $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$

Examples: Determine the convergence or divergence.

Examples. Determine the convergence of divergence. 1. $\sum_{n=0}^{\infty} \frac{n!}{3^n} = \lim_{n \to \infty} \left(\frac{(n+1)!}{3^{n+1}} \right)_{n=1}^{\infty} = 2. \sum_{n=1}^{\infty} \frac{3^{n+1}}{4^n n^2} = \lim_{n \to \infty} \left(\frac{3^{n+2}}{4^{n+1} (n+1)^2} \cdot \frac{4^n n^2}{3^{n+1}} \right)_{n=1}^{\infty} = \lim_{n \to \infty} \frac{3^n n^2}{4^n (n+1)^2} = \lim_{n \to \infty} \frac{3^n n^2}{4^n (n+1)^2} = 1$ 3×1 The series conv. by RT $\lim_{N \to \infty} \frac{N+1}{3} = \infty$ The series diverges by the RT. (nTT would also work)

3. $\sum_{n=2}^{\infty} \frac{(-1)^n \sqrt{n}}{n-1}$	4. $\sum_{n=1}^{\infty} \frac{(2n+1)!!}{3^n (2n-1)n!} = \sum_{n=1}^{\infty} \frac{(2n+1)(2n-1)(2n-3)\cdots 5\cdot 3\cdot 1}{3^n (2n-1)n!}$
RT is inconclusive	$\lim_{N \to \infty} \left(\frac{(2m+3)!!}{3^{n+1}(2n+1)(n+1)!} \cdot \frac{3^n(2n-1)n!}{(2n+1)!!} \right)$
$\lim_{n \to \infty} \frac{\sqrt{n}}{n-1} = 0$	lim (2n+3) (2n-1) N700 3 (n+1) (2n+1)
Vn is decr. Conv. by AST	$\lim_{n \to \infty} \frac{4n2}{6n3} \text{conv. by } R.T.$ $= \frac{3}{2} \times 1$

	Convergence/Divergence Tests					
<i>n</i> th term test	div. if $\lim_{n \to \infty} a_n \neq 0$ (cannot be used to show convergence)					
Geom. series test	$\sum_{n=0}^{\infty} ar^n \qquad r < 1 \rightarrow \text{conv.}, r \ge 1 \rightarrow \text{div.}, S = \frac{a}{1-r}$					
<i>p</i> -series	$\sum_{n=1}^{\infty} \frac{1}{n^p} p > 1 \to \text{conv.}, \ p \le 1 \to \text{div.}$					
Alternating series	decr. terms and $\lim_{n \to \infty} a_n = 0 \to \text{conv.}$					
Ratio test Direct Comparison	$\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right < 1 \to \text{conv.}, \lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right > 1 \to \text{div.}, \text{ (inconclusive if } \lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right = 1)$ (works well for factorials and exponentials) a series with terms smaller than a known convergent series also converges					
	a series with terms larger than a known divergent series also diverges					

Mixed Examples: Determine the convergence or divergence.

5.
$$\sum_{n=1}^{\infty} \frac{n-1}{2n+1}$$

$$\lim_{n \to \infty} \frac{n-1}{2n+1} = \frac{1}{2} \neq 0$$

div. by $n TT$

7. $\sum_{n=1}^{\infty} \left(\frac{e}{3}\right)^{n}$ $r = \frac{e}{3} < 1$ The series conv. by GST

9.
$$\sum_{n=1}^{\infty} (-1)^{n} \frac{3}{n^{2}}$$
10.
$$\frac{1}{10} + \frac{1 \cdot 2}{10^{2}} + \frac{1 \cdot 2 \cdot 3}{10^{3}} + \frac{1 \cdot 2 \cdot 3 \cdot 4}{10^{4}} + \frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5}{10^{5}} + \dots$$

$$\lim_{n \to \infty} \frac{3}{n^{2}} = 0$$
The terms dec.
$$\lim_{n \to \infty} \frac{n!}{n^{2}}$$

$$\lim_{n \to \infty} \frac{n!}{(n^{n+1})!} \cdot \frac{n^{n}}{n!}$$
The series conv.
$$\lim_{n \to \infty} \frac{n+1}{n} = \infty \quad \text{Div. by RT}$$

Use the ratio test to determine convergence or divergence if possible.

1.
$$\sum_{n=1}^{\infty} \frac{n!}{n^3}$$

2. $\sum_{n=0}^{\infty} n \left(\frac{2}{3}\right)^n$
3. $\sum_{n=1}^{\infty} \frac{3^n}{n^3}$
4. $\sum_{n=1}^{\infty} \frac{(-3)^n}{n!}$
5. $\sum_{n=1}^{\infty} \frac{(2n)!}{n3^n}$
6. $\sum_{n=1}^{\infty} \frac{1}{n^{\frac{3}{2}}}$
7. $\sum_{n=0}^{\infty} \frac{(2n+1)!!}{n!} = \sum_{n=1}^{\infty} \frac{(2n+1)(2n-1)(2n-3)\cdots 3\cdot 1}{n(n-1)(n-2)\cdots 2\cdot 1}$

Determine convergence or divergence using any test.

8.
$$\sum_{n=1}^{\infty} (-1)^n \frac{3}{n}$$

9. $\sum_{n=1}^{\infty} \frac{3}{n}$
10. $\sum_{n=0}^{\infty} \frac{1}{3^n}$
11. $\sum_{n=1}^{\infty} \frac{4}{n\sqrt{n}}$
12. $\sum_{n=1}^{\infty} (-1)^n \frac{3n}{n+1}$
14. $\sum_{n=2}^{\infty} \frac{2^n}{\ln n}$
15. $\sum_{n=1}^{\infty} \frac{|\cos n|}{4^n}$
16. $\sum_{n=1}^{\infty} 4\left(\frac{5^n}{3^{n+1}}\right)$
17. $\sum_{n=3}^{\infty} \frac{(n-2)3^n}{n!}$

18. Which of the following series is/are equivalent to $\sum_{n=1}^{\infty} \frac{2n}{n+1}$?

a.
$$\sum_{n=0}^{\infty} \frac{2(n+1)}{n+2}$$
 b. $\sum_{n=0}^{\infty} \frac{2n}{n+1}$ c. $1 + \sum_{n=2}^{\infty} \frac{2n}{n+1}$ d. $\sum_{n=1}^{\infty} \left(2 - \frac{2}{n+1}\right)$ e. $\frac{7}{3} + \sum_{n=3}^{\infty} \frac{2n}{n+1}$

Selected Answers:								
1. ∞, div.	2. $\frac{2}{3}$, conv.	3. 3, div.	4. 0, conv.	5. ∞ , div.	6. 1, inconclusive			
7. 2, div.	8. conv AST	10. conv.	GST 11. c	onv. <i>p</i> ST	14. div. <i>n</i> TT			
16. div. GST	17. conv. I	RT						