name:

1, 1, +...

## BC Topic 5 — Direct Comparison Test due Wednesday, October 18



← visualization of the Direct Comparison Test

**Direct Comparison Test:** Let 
$$0 < a_n \le b_n$$
 for all *n* after a certain *n*.  
1. If  $\sum_{n=1}^{\infty} b_n$  converges, then  $\sum_{n=1}^{\infty} a_n$  converges.  
2. If  $\sum_{n=1}^{\infty} a_n$  diverges, then  $\sum_{n=1}^{\infty} b_n$  diverges.

Informally:

- 1. If the "larger" series converges, then the "smaller" series must also converge.
- 2. If the "smaller" series diverges, then the "larger" series must also diverge.

Examples: Determine the convergence or divergence of the following.

7. 
$$\sum_{n=1}^{\infty} \frac{1}{1+2^n}$$
8. 
$$\sum_{n=3}^{\infty} \frac{1}{n-2}$$
9. 
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+1}} = \frac{1}{2} + \frac{1}{4t^{n}} + \frac{1}{3t^{n}} + \frac{1}{2t^{n}} + \frac{1}{4t^{n}} + \frac{1}{4t^{n}}$$

Use the Direct Comparison Test to determine convergence or divergence.

1. 
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 4}$$
 2.  $\sum_{n=5}^{\infty} \frac{1}{n - 4}$  3.  $\sum_{n=2}^{\infty} \frac{2}{\sqrt{n} - 1}$  4.  $\sum_{n=1}^{\infty} \frac{1}{5^n + 1}$ 

5. 
$$\sum_{n=1}^{\infty} \frac{3^{n+1}}{4^n + 2}$$
 6.  $\sum_{n=1}^{\infty} \frac{\ln n}{n+2}$  7.  $\sum_{n=1}^{\infty} \frac{1}{n!}$ 

| Selected Answers: |         |         |          |          |         |          |
|-------------------|---------|---------|----------|----------|---------|----------|
| 1. conv.          | 2. div. | 3. div. | 4. conv. | 5. conv. | 6. div. | 7. conv. |