BC Topic 3 — Alternating Series Test

due Friday, September 22

log back into your Desmos account

find this intro activity

Alternating Series Test for Convergence:

Let $a_n > 0$. The alternating series $\sum_{n=0}^{\infty} (-1)^n a_n$ and $\sum_{n=0}^{\infty} (-1)^{n+1} a_n$ converge if

- 1. $a_{n+1} \le a_n$ for all n after a certain n (terms never increase in absolute value) and
- $2. \lim_{n\to\infty} a_n = 0$

Examples: Determine the convergence or divergence.

6. $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{2} + \dots 7. \sum_{n=1}^{\infty} (-1)^{n+1} \frac{n+1}{n} = 2 - \frac{3}{2} + \frac{4}{3} - \frac{5}{2} + \dots,$

terms dec. in abs. val.

lim 1 = 0 lim 1 = 0 conv. by AST

 $\lim_{n\to\infty} \frac{n+1}{n} = 1 \neq 0$ div. by nTT

We now have three tests for Convergence/Divergence.

 n^{th} Term Test for <u>Divergence</u>: If $\lim_{n\to\infty} a_n \neq 0$, then $\sum_{n=1}^{\infty} a_n$ diverges.

This test is inconclusive if $\lim_{n\to\infty} a_n = 0$. (cannot be used to show conv.)

Geom. Series Test: $|r| \ge 1 \to \text{diverges}, |r| < 1 \to \text{converges} \text{ and } \sum_{n=0}^{\infty} ar^n = \frac{a}{1-r}$.

Alternating Series Test for Convergence: converges if

- 1. $a_{n+1} \le a_n$ for all n after a certain n (terms never increase in absolute value)
- Note: AST connot be used for div. 2. $\lim a_n = 0$

Determine the convergence or divergence of each series. Show justification and name the test used. If possible, find the sum of the series.

13.
$$\sum_{n=1}^{\infty} \frac{\left(-1\right)^n}{n}$$

13.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$
14.
$$\sum_{n=0}^{\infty} \frac{(-1)^n \sqrt{n}}{n^2 + 1}$$
15.
$$\sum_{n=1}^{\infty} \frac{(-1)^n n^3}{n^3 + 2}$$
16.
$$\sum_{n=1}^{\infty} \frac{(-1)^n n}{\ln n}$$
17.
$$\sum_{n=1}^{\infty} \frac{\cos(n\pi)}{n}$$
18.
$$\sum_{n=1}^{\infty} \left(\frac{3}{4}\right)^n$$
19.
$$\sum_{n=1}^{\infty} \frac{4n + 2}{5n - 1}$$
20.
$$\sum_{n=1}^{\infty} 2\pi^{-n}$$

15.
$$\sum_{n=1}^{\infty} \frac{(-1)^n n^3}{n^3 + 2}$$

$$16. \sum_{n=1}^{\infty} \frac{\left(-1\right)^n n}{\ln n}$$

$$17. \sum_{n=1}^{\infty} \frac{\cos(n\pi)}{n}$$

$$18. \sum_{n=1}^{\infty} \left(\frac{3}{4}\right)^n$$

$$19. \sum_{n=1}^{\infty} \frac{4n+2}{5n-1}$$

20.
$$\sum_{n=1}^{\infty} 2\pi^{-n}$$

21.
$$\sum_{n=1}^{\infty} \frac{\left(-1\right)^n n}{5n^2 - 1}$$

22.
$$\sum_{n=0}^{\infty} \frac{\left(-2\right)^n}{5^{n+1}}$$

21.
$$\sum_{n=1}^{\infty} \frac{(-1)^n n}{5n^2 - 1}$$
 22.
$$\sum_{n=0}^{\infty} \frac{(-2)^n}{5^{n+1}}$$
 23.
$$1 - \frac{\left(\frac{\pi}{4}\right)^2}{2!} + \frac{\left(\frac{\pi}{4}\right)^4}{4!} - \frac{\left(\frac{\pi}{4}\right)^6}{6!} + \cdots$$

Write an expression for the *n*th term of these sequences. Assume n = 1, 2, 3, ...

33.
$$5, \frac{5}{2}, \frac{5}{6}, \frac{5}{24}, \frac{5}{120}, \cdots$$

34.
$$\frac{1}{4}$$
, $\frac{1}{7}$, $\frac{1}{10}$, $\frac{1}{13}$, ...

Determine if the following sequences converge or diverge.

35.
$$\frac{5}{4}$$
, $\frac{8}{7}$, $\frac{11}{10}$, $\frac{14}{13}$, ...

$$36. \ a_n = \frac{n^3}{n^2 + 2}$$

37. Find the value of $2 - \frac{2}{3} + \frac{2}{9} - \frac{2}{27} + \cdots$

- 13. converge by AST 14. converge by AST 15. diverge by nTT 17. converge by AST 18. converge by GST, Sum = 3 19. diverge
 - 19. diverge by nTT
- 20. converge by GST, Sum = $\frac{2}{\pi 1}$ 21. converge by AST
- 22. converge by GST, Sum = $\frac{1}{7}$ 23. converge by AST, Sum = $\frac{1}{\sqrt{2}}$

 - 33. $\frac{5}{n!}$ 35. converges to 1

- 36. diverges