

Series:

Recall from the last lesson that a sequence is an ordered list of numbers. In this lesson we will work with a series which is a sum of numbers.
An infinite series can be represented as $\sum_{n=1}^{\infty} a_{n}=a_{1}+a_{2}+a_{3}+\cdots+a_{n}+\cdots$
Example 1:
What happens as more and more terms of a series like $\sum_{n=0}^{\infty}(2 n+1)=1+3+5+7+\cdots$ are added?
The sum approaches infinity (diverges).

When this happens the series is called divergent.

Example 2:

What happens as more and more terms of $\sum_{n=1}^{\infty} \frac{3}{10^{n}}=\frac{3}{10}+\frac{3}{100}+\frac{3}{1000}+\ldots \quad$ are added?

$$
\begin{aligned}
& =.333 \ldots \\
& =\frac{1}{3}
\end{aligned}
$$

This is an example of a convergent geometric series.

Geometric Series:

If consecutive terms in a series have a common ratio \boldsymbol{r}, the series is called a geometric series. $\sum_{n=0}^{\infty} a r^{n}=a+a r+a r^{2}+\cdots+a r^{n}+\cdots$ is the general form of a geometric series.

If $|r| \geq 1$ the geometric series diverges. If $|r|<1$ the geometric series converges and $\sum_{n=0}^{\infty} a r^{n}=\frac{a}{1-r}$.

Geometric Series:

If consecutive terms in a series have a common ratio \boldsymbol{r}, the series is called a geometric series. $\sum_{n=0}^{\infty} a r^{n}=a+a r+a r^{2}+\cdots+a r^{n}+\cdots$ is the general form of a geometric series.

If $|r| \geq 1$ the geometric series diverges. If $|r|<1$ the geometric series converges and $\sum_{n=0}^{\infty} a r^{n}=\frac{a}{1-r}$.

Examples. Determine if these series converge or diverge and, if possible, find the sum of the series.
3. $\sum_{n=0}^{\infty} \frac{3}{2^{n}}=3+\frac{3}{2}+\frac{3}{4}+\cdots$
4. $\sum_{n=0}^{\infty}\left(\frac{3}{2}\right)^{n}$
$r=\frac{3}{2}$
5. $\sum_{n=1}^{\infty} 4\left(-\frac{1}{2}\right)^{n}=-2+1-\frac{1}{2}+\frac{1}{4}$ $r=\frac{1}{2}$ conv. by GST
div. by GST

$$
\begin{aligned}
r & =-\frac{1}{2} \\
S & =\frac{-2}{1-\left(-\frac{1}{2}\right)} \\
& =\frac{-2}{\frac{3}{2}}=-\frac{4}{3}
\end{aligned}
$$

$$
\begin{aligned}
S & =\frac{3}{1-\frac{1}{2}} \\
& =6
\end{aligned}
$$

first term!

Example 6. Find the fraction form of the repeating decimal $\overline{08}$ using a geometric series.

$$
\begin{aligned}
\overline{08} & =.08+.0008+.000008+\cdots \\
& =\frac{8}{100}+\frac{8}{10,000}+\frac{8}{1,000,000}+\cdots \\
a & =\frac{8}{100} \quad r=\frac{1}{100} \quad \cdot \frac{8}{.08}=\frac{\frac{8}{100}}{1-\frac{1}{100}}=\frac{8}{100} \cdot \frac{100}{99}=\frac{8}{99}
\end{aligned}
$$

In general, convergence of a series is less simple than convergence of a sequence,
The sequence $\left\{a_{n}\right\}=\left\{1+\frac{1}{n}\right\}$ converges because $\lim _{n \rightarrow \infty} a_{n}=1$
However the series $\sum_{n=1}^{\infty}\left(1+\frac{1}{n}\right)=(1+1)+\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{3}\right)+\cdots$ does not converge.
A series cannot converge unless the terms approach a limit of zero.

```
\(n^{\text {th }}\) Term Test for Divergence:
If \(\lim _{n \rightarrow \infty} a_{n} \neq 0\), then \(\sum_{n=1}^{\infty} a_{n}\) diverges. This test is inconclusive if \(\lim _{n \rightarrow \infty} a_{n}=0\).
```

Example 7. Show that $\sum_{n=1}^{\infty} \frac{n!}{2 n!+1}$ diverges.

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{n!}{2 n!+1}=\frac{1}{2} \neq 0 \\
& \text { diverges by nTT }
\end{aligned}
$$

Determine whether each of the following infinite series converges or diverges. Show justification and name the test being used. In addition find the sum of the series, if possible.

1. $\sum_{n=0}^{\infty} 5\left(\frac{2}{3}\right)^{n}$
2. $\sum_{n=1}^{\infty} 5\left(\frac{2}{3}\right)^{n}$
3. $\sum_{n=0}^{\infty} 5\left(\frac{3}{2}\right)^{n}$
4. $\sum_{n=1}^{\infty} \frac{n^{2}+2}{n^{2}}$
5. $\sum_{n=2}^{\infty} \frac{n^{2}}{\ln n}$
6. $5+\frac{5}{2}+\frac{5}{4}+\frac{5}{8}+\cdots$
7. $3+\frac{9}{2}+\frac{27}{4}+\frac{81}{8}+\cdots$
8. $1+0.2+0.04+0.008+\cdots$
9. $\sum_{n=1}^{\infty} \frac{n}{\sin n}$
10. $\sum_{n=1}^{\infty} \frac{3^{n}+2}{3^{n+2}}$
11. $\sum_{n=0}^{\infty} \frac{e^{n}}{\pi^{n+1}}$
12. $\frac{1}{2}+\frac{2}{4}+\frac{6}{8}+\frac{24}{16}+\frac{120}{32}+\cdots$
13. $\sum_{n=1}^{\infty}\left(\sin e^{10}\right)^{n}$
14. $\sum_{n=1}^{\infty} \frac{(-5)^{n}}{6}$
15. $\sum_{n=1}^{\infty}\left(-\frac{5}{6}\right)^{n}$
16. $18-12+8-\frac{16}{3}+\frac{32}{9}-\cdots$
17. $\sum_{n=1}^{\infty} \frac{2 n+3}{3 n+2}$
18. $\sum_{n=0}^{\infty} \frac{n!}{e^{n}}$
19. $\sum_{n=0}^{\infty} \frac{4}{3^{n}}$
20. $\sum_{n=1}^{\infty} 4^{-n}$
21. Given the series $\sum_{n=1}^{\infty} \frac{n^{2}+2}{n^{3}}$:
a. Find $\lim _{n \rightarrow \infty} a_{n}$.
b. Explain why the nth Term Test cannot be used to conclude the series converges.
22. This square is one inch wide. Find the area of the shaded region.
23. The first triangle is shaded 25%. What percent of the triangle will be shaded after infinitely many steps?

Determine the convergence/divergence of the following sequences:
24. $\left\{\left(1+\frac{2}{n}\right)^{n}\right\}$
25. $\left\{\frac{(n+1)!}{n!}\right\}$

Write an expression for the nth term of the following sequences: (assume $n=1,2,3, \cdots$)
26. $3,7,11,15, \cdots$
27. $1, \frac{-1}{2}, \frac{1}{6}, \frac{-1}{24}, \frac{1}{120}, \cdots$
28. $2,6,18,54, \cdots$

1. converges by GST, Sum $=15$	2. conv. by GST, Sum $=10$	3. div. by GST or n TT	
5. div. by $n \mathrm{TT}$	6. conv. by GST, Sum $=10$	7. div. by GST	8. conv. by GST, Sum $=1.25$
9. div. by $n \mathrm{TT}$	11. conv. by GST, Sum $=\frac{1}{\pi-e}$	13. conv. by GST, Sum $=-.407$ or -.408	

14. div. by GST or n TT \quad 15. conv. by GST, Sum $=-\frac{5}{11} \quad$ 17. div. by n TT
15. div. by n TT \quad 20. conv. by GST, Sum $=\frac{1}{3}$
16. converges to a limit of e^{2}
17. diverges
18. $a_{n}=4 n-1, n=1,2,3, \cdots$
19. $a_{n}=2(3)^{n-1}, n=1,2,3, \cdots$
