BC Topic 1 — Sequences

due Wednesday, August 30

Factorial Definition: $n! = n(n-1)(n-2)(n-3)\cdots 1$

Examples;

1. Simplify
$$\frac{(n+2)!}{n!} = \frac{(n+2)(n+1)(n)(n+1)}{n!}$$

= $(n+2)(n+1)$

A sequence is an ordered list of numbers.

Examples:

2. Write out the first five terms of the sequence $\{a_n\}$ if $a_n = \frac{n}{n+1}$.

the recursively defined sequence. $a_1 = 5$, $a_{k+1} = 3a_k + 4$

3. Write out the first five terms of

$$a_1 = 3$$
, $a_{k+1} = 3a_k + 4$
 $a_1 = 3$, $a_{k+1} = 3a_k + 4$
 $a_1 = 3$, $a_{k+1} = 3a_k + 4$

4. Write a recursive definition for the sequence $2, -6, 18, -54, 162, \cdots$

5. Write an expression for the nth term of the sequence.

$$a_n = 2(-3)^{n-1}$$

Convergence or Divergence of a Sequence

If $\{a_n\}$ is a sequence and $\lim_{n\to\infty} a_n = L$ then L is the <u>limit</u> of the sequence and it <u>converges</u> to L.

Example:

6. Find the limit of the sequence $\{b_n\} = \left\{\frac{n}{1-2n}\right\}$.

If $\lim_{n\to\infty} a_n$ does not exist, then the sequence $\{a_n\}$ does not have a limit and $\{a_n\}$ diverges.

Examples: Determine if these sequences converge or diverge and find the limit if possible.

7. $\{a_n\} = \{3 + (-1)^n\}$ $\{a_n\} = \{2, 4, 2, 4, ...$ diverges

8.
$$\{a_n\} = \left\{\frac{\ln(n^2)}{n}\right\}$$

$$\lim_{h \to \infty} \frac{\ln(n^2)}{n}$$

$$\lim_{h \to \infty} \frac{2\ln n}{n} = 0 \quad \text{converges}$$

Without using a calculator, write the first five terms of the sequence with the given *nth* term. Assume $n = 1, 2, 3, \cdots$

$$1. \ a_n = \frac{2^n}{n!}$$

$$2. \ a_n = \left(-\frac{1}{3}\right)^n$$

$$3. \ a_n = \cos\left(\frac{n\pi}{2}\right)$$

Write the first five terms of the recursive sequence.

4.
$$a_1 = 2$$
, $a_{n+1} = 3(a_n + 2)$

5.
$$a_1 = 0$$
, $a_{n+1} = \frac{\pi}{2} \left(\sin \left(a_n + \frac{\pi}{2} \right) \right)$

Write a recursive definition of the sequence.

7. 5, 10, 20, 40, ... 8. 5,
$$-\frac{5}{2}$$
, $\frac{5}{4}$, $-\frac{5}{8}$, ...

Simplify without using a calculator.

9.
$$\frac{7!}{10!}$$

10.
$$\frac{(2n+1)!}{(2n-1)!}$$

Find the limit of each sequence or state that the sequence diverges.

11.
$$a_n = \frac{n^2}{3n^2 - 5}$$

12.
$$a_n = \frac{\ln n^2}{3n}$$

13.
$$a_n = \cos\frac{1}{n}$$

11.
$$a_n = \frac{n^2}{3n^2 - 5}$$
 12. $a_n = \frac{\ln n^2}{3n}$ 13. $a_n = \cos \frac{1}{n}$ 14. $a_n = (-1)^n \frac{n^2}{n^2 + 2}$ 15. $a_n = \frac{3n}{\sqrt{n^2 - 5}}$ 16. $a_n = \frac{\cos n}{n}$ 17. $a_n = (-1)^n \frac{n}{n^2 + 2}$ 18. $a_n = \frac{(n+1)!}{n!}$

15.
$$a_n = \frac{3n}{\sqrt{n^2 - 5}}$$

$$16. \ a_n = \frac{\cos n}{n}$$

17.
$$a_n = (-1)^n \frac{n}{n^2 + 2}$$

18.
$$a_n = \frac{(n+1)!}{n!}$$

Write an expression for the *nth* term of each sequence. Assume $n = 1, 2, 3, \cdots$ 19. $-1, \frac{1}{4}, -\frac{1}{9}, \frac{1}{16}, \cdots$ 20. $\frac{3}{2}, \frac{4}{3}, \frac{5}{4}, \frac{6}{5}, \cdots$ 21. $\frac{2}{1}, \frac{4}{3}, \frac{8}{7}, \frac{16}{15}, \cdots$ 22. $\frac{3}{1}, \frac{3}{2}, \frac{3}{6}, \frac{3}{24}, \cdots$ 23. $\frac{1}{2}, \frac{x}{6}, \frac{x^2}{24}, \frac{x^3}{120}, \cdots$ 24. $-1, 1, 3, 5, \cdots$ 25. $\frac{1}{1}, \frac{4}{3}, \frac{9}{9}, \frac{16}{27}, \cdots$

19.
$$-1, \frac{1}{4}, -\frac{1}{9}, \frac{1}{16}, \cdots$$

20.
$$\frac{3}{2}$$
, $\frac{4}{3}$, $\frac{5}{4}$, $\frac{6}{5}$, ...

21.
$$\frac{2}{1}$$
, $\frac{4}{3}$, $\frac{8}{7}$, $\frac{16}{15}$,...

22.
$$\frac{3}{1}$$
, $\frac{3}{2}$, $\frac{3}{6}$, $\frac{3}{24}$,...

23.
$$\frac{1}{2}$$
, $\frac{x}{6}$, $\frac{x^2}{24}$, $\frac{x^3}{120}$,

25.
$$\frac{1}{1}$$
, $\frac{4}{3}$, $\frac{9}{9}$, $\frac{16}{27}$, ...

1. 2, 2,
$$\frac{4}{3}$$
, $\frac{2}{3}$, $\frac{4}{15}$

Selected Answers:
1. 2, 2,
$$\frac{4}{3}$$
, $\frac{2}{3}$, $\frac{4}{15}$ 2. $-\frac{1}{3}$, $\frac{1}{9}$, $-\frac{1}{27}$, $\frac{1}{81}$, $-\frac{1}{243}$ 4. 2, 12, 42, 132, 402
6. $a_1 = 4$, $a_{n+1} = a_n + 3$ 9. $\frac{1}{720}$ 11. $\frac{1}{3}$ 13. 1 14. The sequence diverges.
16. 0 17. 0 19. $a_n = \frac{\left(-1\right)^n}{n^2}$ 22. $a_n = \frac{3}{n!}$ 25. $a_n = \frac{n^2}{3^{n-1}}$

6.
$$a_1 = 4$$
, $a_{n+1} = a_n + 3$

9.
$$\frac{1}{720}$$

19.
$$a_n = \frac{(-1)^n}{n^2}$$

22.
$$a_n = \frac{3}{n!}$$

$$25. \ a_n = \frac{n^2}{3^{n-1}}$$