Factorial Definition: $n!=n(n-1)(n-2)(n-3) \cdots 1$
Examples;

1. Simplify $\frac{(n+2)!}{n!}=\frac{(n+2)(n+1)(n)(n)}{n(n)}$

$$
=(n+2)(n+1)
$$

A sequence is an ordered list of numbers.

Examples:
2. Write out the first five terms of the sequence $\left\{a_{n}\right\}$ if $a_{n}=\frac{n}{n+1}$.

$$
\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}
$$

3. Write out the first five terms of the recursively defined sequence.

$$
\begin{aligned}
& a_{1}=5, \quad a_{k+1}=3 a_{k}+4 \\
& 5,19,61,187,565
\end{aligned}
$$

4. Write a recursive definition for the sequence $2,-6,18,-54,162, \cdots$

$$
a_{1}=2, \quad a_{k+1}=-3 a_{k}
$$

5. Write an expression for the nth term of the sequence .
$a_{n}=2 \cdot(-3)^{n-1}$

Convergence or Divergence of a Sequence

If $\left\{a_{n}\right\}$ is a sequence and $\lim _{n \rightarrow \infty} a_{n}=L$ then L is the limit of the sequence and it converges to L.
Example:
6. Find the limit of the sequence $\left\{b_{n}\right\}=\left\{\frac{n}{1-2 n}\right\}$.

$$
\lim _{n \rightarrow \infty} \frac{n}{1-2 n}=-\frac{1}{2}
$$

If $\lim _{x \rightarrow \infty} a_{n}$ does not exist, then the sequence $\left\{a_{n}\right\}$ does not have a limit and $\left\{a_{n}\right\}$ diverges.
Examples: Determine if these sequences converge or diverge and find the limit if possible.
7. $\left\{a_{n}\right\}=\left\{3+(-1)^{n}\right\} \quad$ 8. $\left\{a_{n}\right\}=\left\{\frac{\ln \left(n^{2}\right)}{n}\right\}$

$$
\begin{aligned}
\left\{a_{n}\right\}=\{2,4,2,4, \ldots \\
\text { diverges }
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{\ln \left(n^{2}\right)}{n} \\
& \lim _{n \rightarrow \infty} \frac{2 \ln n}{n}=0 \text { converges }
\end{aligned}
$$

Without using a calculator, write the first five terms of the sequence with the given nth term.
Assume $n=1,2,3, \cdots$

1. $a_{n}=\frac{2^{n}}{n!}$
2. $a_{n}=\left(-\frac{1}{3}\right)^{n}$
3. $a_{n}=\cos \left(\frac{n \pi}{2}\right)$

Write the first five terms of the recursive sequence.
4. $a_{1}=2, a_{n+1}=3\left(a_{n}+2\right)$
5. $a_{1}=0, a_{n+1}=\frac{\pi}{2}\left(\sin \left(a_{n}+\frac{\pi}{2}\right)\right)$

Write a recursive definition of the sequence.
6. $4,7,10,13, \cdots$
7. $5,10,20,40, \cdots$
8. $5,-\frac{5}{2}, \frac{5}{4},-\frac{5}{8}, \cdots$

Simplify without using a calculator.
9. $\frac{7!}{10!}$
10. $\frac{(2 n+1)!}{(2 n-1)!}$

Find the limit of each sequence or state that the sequence diverges.
11. $a_{n}=\frac{n^{2}}{3 n^{2}-5}$
12. $a_{n}=\frac{\ln n^{2}}{3 n}$
13. $a_{n}=\cos \frac{1}{n}$
14. $a_{n}=(-1)^{n} \frac{n^{2}}{n^{2}+2}$
15. $a_{n}=\frac{3 n}{\sqrt{n^{2}-5}}$
16. $a_{n}=\frac{\cos n}{n}$
17. $a_{n}=(-1)^{n} \frac{n}{n^{2}+2}$
18. $a_{n}=\frac{(n+1)!}{n!}$

Write an expression for the nth term of each sequence. Assume $n=1,2,3, \cdots$
19. $-1, \frac{1}{4},-\frac{1}{9}, \frac{1}{16}, \cdots$
20. $\frac{3}{2}, \frac{4}{3}, \frac{5}{4}, \frac{6}{5}, \ldots$
21. $\frac{2}{1}, \frac{4}{3}, \frac{8}{7}, \frac{16}{15}, \cdots$
22. $\frac{3}{1}, \frac{3}{2}, \frac{3}{6}, \frac{3}{24}, \cdots$
23. $\frac{1}{2}, \frac{x}{6}, \frac{x^{2}}{24}, \frac{x^{3}}{120}, \cdots$
24. $-1,1,3,5, \ldots$
25. $\frac{1}{1}, \frac{4}{3}, \frac{9}{9}, \frac{16}{27}, \ldots$

Selected Answers:

1. $2,2, \frac{4}{3}, \frac{2}{3}, \frac{4}{15}$
2. $-\frac{1}{3}, \frac{1}{9},-\frac{1}{27}, \frac{1}{81},-\frac{1}{243}$
3. 2, 12, 42, 132, 402
4. $a_{1}=4, a_{n+1}=a_{n}+3$
5. $\frac{1}{720} \quad$ 11. $\frac{1}{3}$
6. 1 14. The sequence diverges.
7. 0
8. 0
9. $a_{n}=\frac{(-1)^{n}}{n^{2}}$
10. $a_{n}=\frac{3}{n!}$
11. $a_{n}=\frac{n^{2}}{3^{n-1}}$
