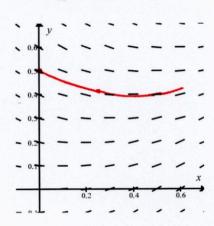
## **BC Topic 18 - Euler's Method**

due Friday, April 12

**Euler's Method** This is a more precise method of graphing an approximate solution to a differential equation.

Example 8. Use Euler's method to construct an approximate solution for the differential equation  $\frac{dy}{dx} = y$ . Start at the point (0,1) and use step size  $\Delta x = .1$ 

|     |       |                     |                                      |      | 1.8  |     |     |
|-----|-------|---------------------|--------------------------------------|------|------|-----|-----|
| x   | y     | $\frac{dy}{dx} = y$ | $\Delta y = (\text{slope}) \Delta x$ |      | 1.4  |     |     |
| 0   | 1     | - 1                 | Ay= 1 (1)=.1                         |      | 1.2  |     |     |
| . 1 | 1.1   | 1.1                 | Ay=1.1(.1)=.11                       |      | 0.8  |     |     |
| . 2 | 1.21  | 1.21                | Ay=1.21(1)= .121                     |      | 0.6  |     |     |
| . 3 | 1.331 |                     |                                      |      | 0.4  |     |     |
|     |       |                     |                                      |      | 0.2  |     | 2   |
|     |       |                     |                                      | -0.2 | -0.2 | 0.2 | 0.4 |


Example 9. Solve  $\frac{dy}{dx} = y$  algebraically. Fill in the table with the actual values of y.

Example 10. Use Euler's Method to approximate the particular solution of the diff. eq. y' = x - y passing through the point (0,0.5). Let  $\Delta x = .2$  and do three steps (n = 3). Graph the points.

| x  | y    | $\frac{dy}{dx} = x - y$ | $\Delta y = (\text{slope}) \Delta x$ |
|----|------|-------------------------|--------------------------------------|
| 0  | .5   | 5                       | Ay= (5)(.2)=1                        |
| .2 | .4   | 2                       | Ay=(2)(.2)=04                        |
| .4 | . 36 | .04                     | Ay=(.04)(.2)=.008                    |
| .6 | .368 |                         |                                      |

0.6 0.5 0.4 0.3 0.2 0.1 x

Example 11. Sketch a particular solution of the diff. eq. y' = x - y passing through the point (0,0.5) using the slope field given. Do the two graphs coincide?



- Without using a calculator, use Euler's Method with a step size of 0.1 to approximate f(.3) if f(0)=3 and f'(x)=x+y.
- Without using a calculator, use Euler's Method with 3 steps each with a size of  $\frac{1}{2}$  to 14. approximate a y-value if y(0) = 2 and y' = 2x - 3y.
- Using a calculator, if y(1) = 2 and  $y' = e^{xy}$  use 4 steps of Euler's Method to approximate y(0.8).

14. 
$$y(\frac{3}{2}) \approx \frac{1}{2}$$