Arc Length

Example 1. Find the length of the arc from

$$
\text { Arc Length }=\int_{\alpha}^{\beta} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta
$$

$$
\begin{aligned}
& \theta=0 \text { to } \theta=2 \pi \text { for the curve } r=2-2 \cos \theta \\
& \begin{aligned}
A_{1} L_{1} & =\int_{0}^{2 \pi} \sqrt{(2-2 \cos \theta)^{2}+(2 \sin \theta)^{2}} d \theta \quad \frac{d r}{d \theta}=2 \sin \theta \\
& =16.000
\end{aligned}
\end{aligned}
$$

Assignment

1. Given the polar curve $r=4 \sin \theta$.
a. Graph without using a calculator.
b. Find the circumference using a geometry formula.
c. Find the circumference showing a polar arc length integral setup and integrate "without" using a calculator. (We will learn trig derivatives later in AB .)
2. Graph $r=4 \cos (2 \theta)$ without a calculator. Then use a calculator to find the length of the arc forming one petal.
3. Use a calculator to graph $r=e^{\frac{\theta}{2}}$ on the interval $0 \leq \theta \leq \frac{3 \pi}{2}$ and find the length of the curve.
4. The region shown is bounded by the polar curve $r=1-\sin \theta$ and the line $\theta=-\frac{\pi}{6}$.
a. Find the area of the region.
b. Find the perimeter of the region.

5. The graph at the right shows the polar curve $r=\theta-\sin (3 \theta)$ on the interval $\frac{\pi}{2} \leq \theta \leq \pi$.
a. Find the area of the region bounded by the curve, the x-axis, and the y-axis.
b. Find $\frac{d r}{d \theta}$ at $\theta=\frac{3 \pi}{4}$ without using a calculator.

c. Use your answer to part b to determine if r is increasing or decreasing on an interval containing $\theta=\frac{3 \pi}{4}$.
d. Find the value of θ on $\frac{\pi}{2} \leq \theta \leq \pi$ at which the curve is closest to the pole.
e. Find the x-coordinate of the point on the curve when $\theta=\frac{3 \pi}{4}$.
f. Find $\frac{d x}{d \theta}$ at $\theta=\frac{3 \pi}{4}$ using a calculator.
g. Use your answer to part f to determine if x is increasing or decreasing on an interval containing $\theta=\frac{3 \pi}{4}$.

