BC Topic 11 - Vector Definitions

Vectors (definitions):

Vector- directed line segment
Magnitude- $\|v\|=\sqrt{x^{2}+y^{2}}$

Direction- $\theta=\arctan \frac{y}{x}$
Equivalent Vectors- Same magnitude and same direction (not same starting/ ending points)

Component form-

Example 2. The initial point of a vector is $(-1,3)$ and its terminal point is $(2,7)$
a. Graph the vector.

b. Graph the vector in standard position on the same axes.
$\langle 3,4\rangle$
d. Find the magnitude of the vector.
$\sqrt{3^{2}+4^{2}}=5$
e. Find the direction
of the vector.

$$
\begin{aligned}
\theta & =\tan ^{-1} \frac{4}{3} \\
& =.927
\end{aligned}
$$

c. Give the component form of the vector.

Example 3. Find the direction of a vector given by $\langle-3,5\rangle$.

$$
\begin{aligned}
& \tan ^{-1}\left(-\frac{5}{3}\right)=-1.030 \\
& \theta=-1.030+\pi=2.111
\end{aligned}
$$

Example 4. If the magnitude of a vector v is $\|v\|=6$ and its direction is $\theta=\frac{2 \pi}{3}$, write the v in component form.

$$
\begin{array}{lll}
x & =6 \cos \frac{2 \pi}{3} & \begin{aligned}
y & =6 \sin \frac{2 \pi}{3} \\
& =-3 \\
& =3 \sqrt{3}
\end{aligned} \\
V=\langle-3,3 \sqrt{3}\rangle &
\end{array}
$$

Assignment

Find the component form of the vector and sketch it with the initial point at the origin.
5.

6.

7. Find the component form of the u and v vectors whose initial and terminal points are given. Show that u and v are equivalent. $u:(3,-2),(5,2) \quad v:(-1,-4),(1,0)$
8. The initial and terminal points of a vector are $(-1,3)$ and $(3,6)$.
a. Sketch the vector.
b. Write the component form.
c. Sketch the vector with the initial point at the origin.
9. If the initial point of vector v is $(5,-2)$ and $v=\langle-2,4\rangle$, find the terminal point.
10. Find the magnitude of the vector $v=\langle-4,3\rangle$.

Find the component form of each vector given the magnitude and the direction without using a calculator.
11. $\|v\|=5, \theta=0$.
12. $\|v\|=6, \theta=\frac{4 \pi}{3}$.
13. $\|v\|=4, \theta=\frac{7 \pi}{4}$.
14. Use a calculator to find the magnitude and the direction of the vector $v=\langle-8,-13\rangle$.

7. $u=\langle 2,4\rangle=v$
12. $v=\langle-3,-3 \sqrt{3}\rangle$

