Do not use a calculator on this portion.

1. $\int_{1}^{2}\left(4 x^{3}-6 x\right) d x=$
(A) 2
(B) 4
(C) 6
(D) 36
(E) 42
2. If $f(x)=x \sqrt{2 x-3}$, then $f^{\prime}(x)=$
(A) $\frac{3 x-3}{\sqrt{2 x-3}}$
(B) $\frac{x}{\sqrt{2 x-3}}$
(C) $\frac{1}{\sqrt{2 x-3}}$
(D) $\frac{-x+3}{\sqrt{2 x-3}}$
(E) $\frac{5 x-6}{\sqrt{2 x-3}}$
3. The graph of $y=3 x^{4}-16 x^{3}+24 x^{2}+48$ is concave down for
(A) $x<0$
(B) $\quad x>0$
(C) $x<-2$ or $x>-\frac{2}{3}$
(D) $\quad x<\frac{2}{3}$ or $\quad x>2$
(E) $\frac{2}{3}<x<2$
4. $\frac{1}{2} \int e^{\frac{t}{2}} d t=$
(A) $e^{-t}+C$
(B) $e^{\frac{-t}{2}}+C$
(C) $e^{\frac{t}{2}}+C$
(D) $2 e^{\frac{t}{2}}+C$
(E) $e^{t}+C$
5. $\frac{d}{d x} \cos ^{2}\left(x^{3}\right)=$
(A) $6 x^{2} \sin \left(x^{3}\right) \cos \left(x^{3}\right)$
(B) $6 x^{2} \cos \left(x^{3}\right)$
(C) $\sin ^{2}\left(x^{3}\right)$
(D) $\quad-6 x^{2} \sin \left(x^{3}\right) \cos \left(x^{3}\right)$
(E) $\quad-2 \sin \left(x^{3}\right) \cos \left(x^{3}\right)$
6. An equation of the line tangent to the graph of $y=\cos (2 x)$ at $x=\frac{\pi}{4}$ is
(A) $y-1=-\left(x-\frac{\pi}{4}\right)$
(B) $y-1=-2\left(x-\frac{\pi}{4}\right)$
(C) $y=2\left(x-\frac{\pi}{4}\right)$
(D) $y=-\left(x-\frac{\pi}{4}\right)$
(E) $\quad y=-2\left(x-\frac{\pi}{4}\right)$.
7. At what point on the graph of $y=\frac{1}{2} x^{2}$ is the tangent line parallel to the line $2 x-4 y=3$?
(A) $\left(\frac{1}{2},-\frac{1}{2}\right)$
(B) $\left(\frac{1}{2}, \frac{1}{8}\right)$
(C) $\left(1,-\frac{1}{4}\right)$
(D) $\left(1, \frac{1}{2}\right)$
(E)
8. The graph of the function f in shown in the figure. Which of the following statements about f is true?
(A) $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow b} f(x)$
(B) $\lim _{x \rightarrow a} f(x)=2$
(C) $\lim _{x \rightarrow b} f(x)=2$
(D) $\lim _{x \rightarrow b} f(x)=1$
(E) $\quad \lim _{x \rightarrow a} f(x)$ does not exist

9. If $x^{2}+y^{2}=25$, what is the value of $\frac{d^{2} y}{d x^{2}}$ at the point $(4,3)$?
(A) $-\frac{25}{27}$
(B) $-\frac{7}{27}$
(C) $\frac{7}{27}$
(D) $\frac{3}{4}$
(E) $\frac{25}{27}$
10. If $f(x)=\ln \left|x^{2}-1\right|$, then $f^{\prime}(x)=$
(A) $\left|\frac{2 x}{x^{2}-1}\right|$
(B) $\frac{2 x}{\left|x^{2}-1\right|}$
(C) $\frac{2|x|}{x^{2}-1}$
(D) $\frac{2 x}{x^{2}-1}$
(E) $\frac{1}{x^{2}-1}$

You may use a calculator on the remaining problems. It will not be needed on all problems.
76. If $f(x)=\frac{e^{2 x}}{2 x}$, then $f^{\prime}(x)=$
(A) 1
(B) $\frac{e^{2 x}(1-2 x)}{2 x^{2}}$
(C) $e^{2 x}$
(D) $\frac{e^{2 x}(2 x+1)}{x^{2}}$
(E) $\frac{e^{2 x}(2 x-1)}{2 x^{2}}$
79. Let f be a function such that $\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h}=5$. Which of the following must be true? I. $\quad f$ is continuous at $\mathrm{x}=2$.
II. $\quad f$ is differentiable at $\mathrm{x}=2$.
(A) I only
(B) II only
(C) I and II
80. Let f be the function given by $f(x)=2 e^{4 x^{2}}$. For what value of x is the slope of the line tangent to the graph of f at $(x, f(x))$ equal to 3 ?
(A) 0.168
(B) 0.276
(C) 0.318
(D) 0.342
(E) 0.551
85. If the derivative of f is given by $f^{\prime}(x)=e^{x}-3 x^{2}$, at which of the following x does f have a relative maximum value?
(A) -0.46
(B) 0.20
(C) 0.91
(D) 0.95
(E) 3.73
82. If $y=2 x-8$, what is the minimum value of the product $x y$?
(A) -16
(B) -8
(C) -4
(D) 0
(E) 2
83. What is the area of the region in the first quadrant enclosed by the graphs of $y=\cos x, \quad y=x$, and the y-axis?
(A) 0.127
(B) 0.385
(C) 0.400
(D) 0.600
(E) 0.947

