LESSON 3-2 PRODUCT AND QUOTIENT RULES, CALCULATOR DIFFERENTIATION

Product Rule: $\frac{d}{d x}(f(x) \cdot g(x))=f(x) g^{\prime}(x)+g(x) f^{\prime}(x) \quad$ or $\quad \frac{d}{d x}(f \cdot s)=f s^{\prime}+s f^{\prime}$
Quotient Rule: $\frac{d}{d x} \frac{f(x)}{g(x)}=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{(g(x))^{2}}$ or $\frac{d}{d x} \frac{t}{b}=\frac{b t^{\prime}-t b^{\prime}}{b^{2}}$

Examples: Differentiate.

$$
\begin{aligned}
& \text { 1. } f(x)=\left(3 x^{2}-2\right)(2 x+3) \\
& \text { 2. } y=\frac{2 x^{2}-4 x+3}{2-3 x} \\
& \text { 3. } y=\frac{-9}{5 x^{2}}=\frac{-9}{5} x^{-2} \\
& \begin{array}{rlrl}
\text { P.R: } & f^{\prime}(x)=\left(3 x^{2}-2\right)(2)+(2 x+3)(6 x) & & y^{\prime} \\
& =6 x^{2}-4+12 x^{2}+18 x \\
& =18 x^{2}+18 x-4
\end{array} \quad \text { Q.R: } y^{\prime}=\frac{(2-3 x)(4 x-4)-\left(2 x^{2}-4 x+3\right)(-3)}{(2-3 x)^{2}} \quad \begin{array}{ll}
& =\frac{18}{5 x^{3}}
\end{array} \\
& \text { or } f(x)=6 x^{3}+9 x^{2}-4 x-6 \\
& f^{\prime}(x)=18 x^{2}+18 x-4 \\
& \text { Q.R: } \frac{\text { or }}{y^{\prime}}=\frac{\left(5 x^{2}\right)(0)-(-9)(10 x)}{\left(5 x^{2}\right)^{2}} \\
& =\frac{90 x}{25 x^{4}}=\frac{18}{5 x^{3}}
\end{aligned}
$$

Calculator Differentiation

A TI-83 calculator can be used to find the value of a derivative at a specific point using $\frac{d y}{d x} \underline{\text { in the calculate menu or nDeriv in the math menu }}$. It can also graph the derivative of a given function using nDeriv in the math menu. Since n Deriv works for both of these situations, and in some situations is more accurate, it is the recommended method.
4. If $f(x)=x^{3}+3^{x}$, find $f^{\prime}(2)$. Calculator $\frac{d y}{d x}=21.887$ or 21.888

$$
f^{\prime}(2)=\text { nDeriv }\left(x^{3}+3^{x}, x, 2\right)=21.887 \text { or } 21.888
$$

5. If $g(x)=\ln \left(x^{2}-3\right)$, find $g^{\prime}(2), g^{\prime}(4)$, and sketch a graph of $g^{\prime}(x)$.

Hint: To save time and avoid confusing parentheses, let $y_{1}=\ln \left(x^{2}-3\right)$.

$$
g^{\prime}(2)=\text { nDeriv }\left(y_{1}, x, 2\right)=4.000 \quad g^{\prime}(4)=.615
$$

To graph $g^{\prime}(x)$, let $y_{2}=n \operatorname{Deriv}\left(y_{1}, x, x\right)$.

> zoom decimal
6. If $f(x)=|x|$, find $f^{\prime}(0)$.

$f^{\prime}(0 d$ oes not exist in spite of what the

